Instability results for reaction diffusion equations with Neumann boundary conditions
نویسندگان
چکیده
منابع مشابه
Reaction-diffusion equations with nonlinear boundary conditions in narrow domains
Second initial boundary problem in narrow domains of width ǫ ≪ 1 for linear second order differential equations with nonlinear boundary conditions is considered in this paper. Using probabilistic methods we show that the solution of such a problem converges as ǫ ↓ 0 to the solution of a standard reaction-diffusion equation in a domain of reduced dimension. This reduction allows to obtain some r...
متن کاملReaction-diffusion waves with nonlinear boundary conditions
A reaction-diffusion equation with nonlinear boundary condition is considered in a two-dimensional infinite strip. Existence of waves in the bistable case is proved by the Leray-Schauder method. 1. Formulation of the problem. Reaction-diffusion problems with nonlinear boundary conditions arise in various applications. In physiology, such problems describe in particular development of atheroscle...
متن کاملNoncoercive convection-diffusion elliptic problems with Neumann boundary conditions
We study the existence and uniqueness of solutions of the convective-diffusive elliptic equation −div(D∇u) + div(V u) = f posed in a bounded domain Ω ⊂ RN , with pure Neumann boundary conditions D∇u · n = (V · n)u on ∂Ω. Under the assumption that V ∈ Lp(Ω)N with p = N if N ≥ 3 (resp. p > 2 if N = 2), we prove that the problem has a solution u ∈ H1(Ω) if ∫ Ω f dx = 0, and also that the kernel is...
متن کاملAbsorbing boundary conditions for diffusion equations
Résumé. Nous introduisons une famille de conditions aux limites absorbantes pour des équations paraboliques à coefficients variables et une frontière quelconque. Elle repose sur l’identification géométrique de l’application Dirichlet à Neumann, et une approximation rationelle de z 1/2 dans le plan complexe. Les conditions aux limites obtenues sont stables, précises, et faciles à mettre en œuvre.
متن کاملExistence and asymptotic stability of a periodic solution with boundary layers of reaction-diffusion equations with singularly perturbed Neumann boundary conditions
We consider singularly perturbed reaction-diffusion equations with singularly perturbed Neumann boundary conditions. We establish the existence of a time-periodic solution u(x, t, ε) with boundary layers and derive conditions for their asymptotic stability The boundary layer part of u(x, t, ε) is of order one, which distinguishes our case from the case of regularly perturbed Neumann boundary co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1978
ISSN: 0022-0396
DOI: 10.1016/0022-0396(78)90033-5